Infrared Spectroscopic and Gravimetric Studies on the Dicyclopentylaminemetal(II) Tetracyanonickellate(II) Host-Aromatic Guest Systems

ZİYA KANTARCI ${ }^{1, *}$ and CELAL BAYRAK ${ }^{2}$
${ }^{1}$ Gazi Üniversitesi, Fen Edebiyat Fakültesi, 06500, Ankara, Turkey; ${ }^{2}$ Hacettepe Üniversitesi, Eğitim Fakültesi, 06532, Beytepe/Ankara, Turkey

(Received: 8 February 2002; in final form: 14 June 2002)

Key words: benzene derivatives, cyclopentylamine, inclusion compounds, infrared spectra, metal complexes, tetracyanonickellate

Abstract

The host complexes $\mathrm{M}(\text { Cyclopentylamine })_{2} \mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Co}$ or Cd$)$ have been prepared in powder form. The spectral data suggest that the structures of these compounds are similar to those of the Hofmann-dma-type hosts. The absorption and the liberation processes of the aromatic guests (benzene, toluene, 1,2-, 1,3-, 1,4-dichlorobenzene, 1,4-dibromobenzene $o-, m$-, p-xylene, naphthalene) in these hosts have been examined at room temperature by gravimetric and spectroscopic measurements. The desorption of the benzene guest against time has been measured. The host structures do not change on inclusion and liberation of the guests. The host compounds have been suggested as sorbents for isomeric separations.

Introduction

Hofmann-type host complexes are formulated as $\mathrm{ML}_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4}\left(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}\right.$ or $\mathrm{Cd} ; \mathrm{M}^{\prime}=\mathrm{Ni}$, Pd or Pt ; $\mathrm{L}=$ unidentate ligand) (Figure 1).The framework of these hosts consists of two-dimensional polymeric layers formed from ML_{2} cations and $\mathrm{M}^{\prime}(\mathrm{CN})_{4}$ anions. The M^{\prime} atom is bonded to four C atoms of the CN groups in a squareplanar geometry. The M atom is octahedrally surrounded by six N atoms, four from the CN units and the other two are from two ligand molecules. The ligand molecules lie above and below the layers. The ligand and the layers as blocking units provide empty voids of varying shapes and dimensions, in which guest molecules may be imprisoned [1].

The host structure described above is not unique for the given chemical formula. A number of studies have suggested that similar compositions never support similar structures for the cyanometallate clathrate and host compounds [13]. Of these, dimethylamine (dma) [1] and cyclohexylamine (CHA) [3] give a number of inclusion compounds with a selectivity very different from the Hofmann-type hosts. The hosts $\mathrm{Cd}(\mathrm{dma})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ [1] and $\mathrm{M}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=$ Co or Cd) [3] can include, besides benzene, a number of large aromatic guests (some benzene derivatives and naphthalene) which have never been found enclathrated into Hofmann-type and the analogous hosts. Some of the inclusion compounds with dma show X-ray diffraction patterns characteristic of the intercalate structures of these guests

[^0]

Figure 1. The model for the Hofmann-diam-type host structure (open circle: 6-coordinate M , solid circle: square-planar Ni , open column: an ambident ligand, thick line: CN bridge and thin line: edge of cavity).
between the layered metal complex sheets. The expanded spacing has been interpreted in term of the guest molecules arranged between sheets covered with hydrophobic methyl groups which may form a tunnel-like cavity between the sheets [1].

These unusual results have encouraged us to explore the inclusion behaviour of the Hofmann-type and Hofmann- $\mathrm{T}_{\mathrm{d}^{-}}$ type clathrates, with a series of cycloalkylamines and a variety of guest molecules different in size and shape from those enclathrated in the Hofmann-type and Hofmann- T_{d}-type hosts.

Figure 2. Decay of n (number of benzene molecules) against time for the Co-CPA-Ni-Benzene system.

Now, for the first time we have prepared two new Hofmann-cyclopentylamine (CPA)-type host complexes, $\mathrm{M}(\mathrm{CPA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Co}$ or Cd$)$ (abbr. to $\mathrm{M}-\mathrm{CPA}-$ Ni) in powder form and the clathrates of the form $\mathrm{M}(\mathrm{CPA}) \mathrm{Ni}(\mathrm{CN})_{4} \cdot \mathrm{nG}(\mathrm{n}=$ number of G (guest), $\mathrm{G}=$ benzene, toluene, $o-, m$-, p-xylenes, naphthalene and 1,2-,1,3- and 1,4 -dichlorobenzene and 1,4 -dibromobenzene). Gravimetric and infrared spectroscopic measurements of the sorption processes of the aromatic guests in the vapour phase have been examined at room temperature. The loss of benzene from the host $\mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}$ against time has been measured.

Experimental

All chemicals used were reagent grade (Merck) and used without further purification.
$\mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}$ (or $\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}$): this host complex was prepared by adding 3 millimoles of CPA in solution in ethanol (ca. 20 mL) into 1 millimole of the Hofmann$\mathrm{H}_{2} \mathrm{O}$-type hydrate $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.383 \mathrm{~g}$) (or $\left.\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} .4 \mathrm{H}_{2} \mathrm{O}(0.383 \mathrm{~g})\right)$ which was prepared as described by Kantarcı and Bülbül [3]. The precipitate was filtered, washed with ethanol and ether, successively, and dried in air to constant weight. The complexes, $\mathrm{M}(\mathrm{CPA})_{2}$ $\mathrm{Ni}(\mathrm{CN})_{4}(\mathrm{M}=\mathrm{Co}$ or Cd$)$, were obtained in quantitative yield.

The freshly prepared complexes were analyzed for Co, $\mathrm{Cd}, \mathrm{C}, \mathrm{H}$ and N with the following results (found \%/calculated \%): $\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NH}_{2}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$: $\mathrm{Co}=15.03 / 14.96$, $\mathrm{Ni}=14.97 / 14.85, \mathrm{C}=42.98 / 42.89, \mathrm{H}=4.65 / 5.65, \mathrm{~N}=$ 20.98/21.43. $\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NH}_{2}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}: \mathrm{Cd}=25.23 / 25.15$, $\mathrm{Ni}=13.17 / 13.05, \mathrm{C}=37.78 / 37.74, \mathrm{H}=4.32 / 4.97, \mathrm{~N}=$ 18.61/18.86.

The clathrate compounds were prepared by leaving the host compounds in the saturated guest vapour as described below.

Infrared spectra of the compounds were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ on a Mattson 1000 FT-IR spectrometer which was calibrated using an indene/camphor/cyclohexane standard solution. The samples were prepared as mulls in Nujol and fluoroube (poly (chlorotrifloroethylene)) between CsI windows.
Table 1. The wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of the $\mathrm{Ni}(\mathrm{CN})_{4}$ in the host and clathrates compounds

Assignment ${ }^{\text {a }}$ b	$\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN}) 4{ }^{\text {a }}$	Co-CPA-Ni	Cd-CPA-Ni	Co-CPA-Ni-2G $\mathrm{G}=$ Benzene	$\begin{aligned} & \text { Cd-CPA-Ni-2G } \\ & \mathrm{G}=\text { Benzene } \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-2G } \\ & \text { G = Toluene } \end{aligned}$	$\begin{aligned} & \text { Cd-CPA-Ni-2G } \\ & \mathrm{G}=\text { Toluene } \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-2G } \\ & \mathrm{G}=o-\mathrm{Xylene} \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=o-\mathrm{Xylene} \end{aligned}$
$\nu_{8}(\mathrm{CN}), E_{u}$	2128 vs, 2132 vs	2159 vs	2149 vs	2160 vs	2151 vs	2160 vs	2151 vs	2163 vs	2150 vs
Hot band?	-	2120 w	2110 vw	2123 vw	2113 vw	2121 vw	2113 vw	2126 vw	2113 vw
ν_{12}, π (NiN), $A_{2 u}$	448 w	455 w	448 w	472 w	466 m	456 w	455 w	456 w	456 w
$\nu_{10}, \delta(\mathrm{NiCN}), E_{2}$	427 vs	436 vs	422 vs	437 vs	423 vs	436 vs	422 vs	437 vs	423 vs
Assignment ${ }^{\text {a,b }}$	Co-CPA-Ni-2G	$\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{C}$	Co-CPA-Ni-2G	Cd-CPA-Ni-2G		Co-CPA-Ni-2G	Cd-CPA-Ni-2G	Co-CPA-Ni-2G	Cd-CPA-Ni-2G
	$\mathrm{G}=m$-Xylene	$\mathrm{G}=m$-Xylene	$\mathrm{G}=p$ - Xy - l e	$\mathrm{G}=p$-xylene		$\mathrm{G}=1$, -dichlorobenzene	$\mathrm{G}=1,2$-dichlorobenzene	$\mathrm{G}=$ Naphthalene	$\mathrm{G}=$ Naphthalene
$\nu_{8}(\mathrm{CN}), E_{u}$	2161 vs	2149 vs	2163 vs	2152 vs		2161 vs	2151 vs	2160 vs	$2153 \mathrm{~s}, 2146 \mathrm{~s}$
Hot band?	2124 w	2112 vw	2123 vw	2116 vw		2125 vw	2115 vw	2123 vw	2113 vw
ν_{12}, δ (NiN), $A_{2} u$	455 w	448 w	446 w	438 w		47 w	448 w	447 w	448 w
$\nu_{10}, \delta(\mathrm{NiCN}), E_{2}$	436 vs	422 vs	436 vs	423 vs		436 vs	423 vs	437 vs	422 vs

[^1]

Figure 3. The important IR band of $\mathrm{CPA}, \mathrm{Ni}(\mathrm{CN})_{4}$, benzene and naphthalene species in different chemical states related to the $\mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}-\mathrm{Guest}$ system (all compounds are in nujol).

Figure 4. The important IR bands of $\mathrm{CPA}, \mathrm{Ni}(\mathrm{CN})_{4}$, benzene and naphthalene species in different chemical states related to the $\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-\mathrm{Guest}$ system (all compounds are in nujol).

Results and discussion

For comparison and discussion the important spectral regions of $\mathrm{CPA}, \mathrm{Ni}(\mathrm{CN})_{4}$, benzene and napthalene species in different chemical states are shown in Figures 3 and 4.

Before dealing with the inclusion and liberation of the guest species in the host complexes, it is appropriate to elucidate the host framework on the basis of the available spectral data.

The spectral features of the host compounds under study are found to be similar to each other suggesting that they also possess similar structural features. It will be convenient to divide the vibrations into two, arising from the $\mathrm{Ni}(\mathrm{CN})_{4}$ group and from the CPA ligand. The assignment of the spectral bands due to the $\mathrm{Ni}(\mathrm{CN})_{4}$ species are straightforward, since these bands are persistent and picked out with ease [3, 4-9].

$\mathrm{Ni}(\mathrm{CN})_{4}$ group vibrations

The fact that in the host framework of the Hofmann-type clathrates $[1-3,6,7]$ and Hofmann-type host complexes [4, 7, 8], the metal atom Ni in $\mathrm{Ni}(\mathrm{CN})_{4}$ is square planarly surrounded by the carbon ends of the CN ions suggests that the host framework of the complexes studied also have square planar $\mathrm{Ni}(\mathrm{CN})_{4}$ units. In order to assign the bands attributable to the $\mathrm{Ni}(\mathrm{CN})_{4}$ ion in the spectra, we refer to the work of McCullough et al. who presented vibrational data for the salt $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ in the solid state [9]. In this salt the $\mathrm{Ni}(\mathrm{CN})_{4}$ anion is not coordinated to Na^{+}ion; therefore, it can be treated as an isolated unit with $\mathrm{D}_{4 \mathrm{~h}}$ symmetry and thus used as reference to comment on vibrational changes when $\mathrm{Co}-\mathrm{NC}$ (or $\mathrm{Cd}-\mathrm{NC}$) bonding takes place. The spectral data for $\mathrm{Ni}(\mathrm{CN})_{4}$ groups in the host complexes and clathrates are given in Table 1, together with the spectral data of $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$. The assigned wavenumber of the $\mathrm{Ni}(\mathrm{CN})_{4}$ units of the complexes studied are much higher than those for the isolated $\mathrm{Ni}(\mathrm{CN})_{4}$ ion (Table 1). Such frequency shifts have been observed for Hofmann-type host frameworks [48], and are attributed to the mechanical coupling of the internal modes of $\mathrm{Ni}(\mathrm{CN})_{4}$ with the $\mathrm{M}-\mathrm{NC}$ vibrations. It follows that the N -termini of the $\mathrm{Ni}(\mathrm{CN})_{4}$ group are bound to a Co (or Cd) atom in the host complexes.

CPA (cyclopentylamine) vibrations

The assignments and the wavenumbers of the vibrational bands of CPA observed in the infrared spectra of the compounds under study are given in Table 2, together with the spectral data for CPA in the gas phase [10] on which the assignments are based.

The $\mathrm{N}-\mathrm{H}$ streching frequencies of the CPA molecules in the host complexes are found to be ca. $50 \mathrm{~cm}^{-1}$ lower than those of CPA in the gas phase (Table 2). These downward frequency shifts may be explained as weakening of the $\mathrm{N}-\mathrm{H}$ bonds resulting from the electron draining from the N atom on account of its coordination to the metal atom M (Co or Cd). A metal dependent downward frequency shift is also observed for the NH_{2} scissoring mode
(Table 2). Similar shifts have been observed in the M (cyclohexylamine) $)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ (M Co or Cd) host complexes [3].

Gravimetric results and spectral changes upon enclathration

When the host complexes are subjected to the guest vapour in equilibrium with their liquid phases in a desiccator at ambient conditions, the guest molecules are sorbed by the host at a rate depending on the vapor pressure of the guest. The amount of the sorbed guest molecules was determined gravimetrically by leaving the host complex in the guest vapour to constant weight. n, the number of the guest molecules per molecular formula of the host complexes, and their sorbing duration (the time required to attain constant weight) are given in Table 3. (It should be noted that when these preparations are attempted in solution in ethanol host complexes with a much lower number of guest molecules than those in Table 3 are obtained). The most outstanding fact in Table 3 is that the number of benzene and toluene molecules appears to be more than the formal maximum number of 2 found in the Hofmann-type clathrates prepared previously [1]. When these clathrates are left in open air, the number of guest molecules, n, decreases rapidly down to ca. 2 , and then continues to decrease at a slower rate. This liberation process for benzene from $\mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}$ is illustrated in Figure 2, which plots the decrease of n against time. (Similar observations have been made for benzene from $\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}$ and toluene in Co-CPA-Ni hosts). The curvature at $n=2$ on the plot (Figure 2) suggests that the inclusion compounds for guest molecules for $n \leq 2$ are more stable than for $n>2$. Similar observations have been made for the $\mathrm{M}-\mathrm{CHA}-\mathrm{Ni}-\mathrm{G}$ ($\mathrm{M}=\mathrm{Co}$ or $\mathrm{Cd}, \mathrm{G}=$ benzene or toluene systems [3].

The notable spectral changes upon enclathration are as follows: of the host moieties with the exception of $\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}$ in the naphthalene clathrate, the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit does not exhibit considerable spectral changes upon sorption (Table 1). These results suggest that the planar structure of $\left[\mathrm{M}-\mathrm{Ni}(\mathrm{CN})_{4}\right]_{\infty}$ is preserved (for all n values) upon enclathration. Substantial spectral changes for the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit in the dicyclohexylaminemetal(II) tetracyanonickellate(II)host-aromatic guest systems have however been observed and attributed to the substantial structural changes of the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit [3]. In the case of $\mathrm{Cd}-$ CPA $-\mathrm{Ni}-1.85 \mathrm{Npth}$ two bands (as a doublet) are observed at 2153 and $2146 \mathrm{~cm}^{-1}$. This spectral feature may be due to the fact that the primary ligand $\mathrm{Ni}(\mathrm{CN})_{4}$ behaves as a bidentate ligand (as $\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}$) in the host structure.

The noteworthy spectral features arising from the ligand molecules on guest inclusion are as follows. On going from the host complex to the clathrate the symmetric and asymmetric stretching frequencies of the NH_{2} unit decreases. This downward shift may be due to hydrogen bonding between the π electron of the guest ring (s) and the cyclopentylamine ligand molecules, as has been suggested for the Hofmanntype benzene clathrates with amine and diamine ligands [16, 19]. Another notable feature is that the $\omega\left(\mathrm{NH}_{2}\right)$ and $\delta\left(\mathrm{NH}_{2}\right)$ vibrations appear at higher frequencies when com-
Table $2 a$. Assignment and the IR wavenumbers for the CPA in M-CPA-Ni complexes and their clathrates

Assignment ${ }^{\text {a }}$ b	$\begin{aligned} & \text { (Gas) } \\ & \text { CPAR) } \end{aligned}$	Co-CPA-Ni	Cd-CPA-Ni	$\begin{aligned} & \text { Co-CPA-Ni-2G } \\ & \mathrm{G}=\text { = Benzene } \end{aligned}$	$\begin{aligned} & \text { Cd-CPA-Ni-2G } \\ & \mathrm{G}=\text { = Benzene } \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-2G } \\ & \mathrm{G}=\text { Toluene } \end{aligned}$	$\begin{aligned} & \text { Cd-CPA-Ni-2G } \\ & \mathrm{G}=\text { Toluene } \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-1.5G } \\ & \mathrm{G}=o-\text {-Xylene } \end{aligned}$
$\nu_{24}, \mathrm{NH}_{2}$ antisym. str	3400 vw	3350 s	3353 s	3335 s	3337 s	3338 s	3337 s	3339 s
ν_{1}, NH_{2} symmetric stretch	3339 w	3288 m	3291 m	3279 m	3278 m	3281 m	3281 m	3280 m
$\begin{aligned} & v_{2} \text { and } v_{25}, \beta \text { - } \mathrm{CH} \mathrm{CH}_{2} \\ & \text { antisymerric strecth } \end{aligned}$	2968 vvs	2948 vs	2950 vs	2952 vs	2950 vs	2952 vs	2952 vs	2947 vs
ν_{3}, α - CH stretch		2913 m , sh	2911 m, sh	2907 w, sh	2916 m , sh	2922 m , sh	2925 w, sh	2927 w, sh
$v_{4}, v_{26}, \beta-\mathrm{CH}_{2}$ symmerric stretch	2875 vvs	2863 s	2861 s	2865 s	2861 s	2870 s	2869 s	2867 s
	2700 w	2725 w	2726 w	2725 w	2725 w	2735 w	2728 w	2736 w
${ }_{7}$, NH_{2} deformation	1624 Q, s	1578 s	1578 s	1578 s, 1477 m	1579 s	1581 s	1580 s	1578 s
$\begin{aligned} & v_{9}, v_{30}, \beta-\mathrm{CH}_{2} \\ & \text { deformations } \end{aligned}$	1461 Q, s	1450 m	1451 m	1456 w	1451 w	1457 m	1457 w	1456 m
$\nu_{10}, \alpha-\mathrm{C}-\mathrm{H}$ in-plane bend	1356 s	1379 m	1379 m	1378 m	1378 m	1378 m	1378 m	1376 m
$v_{11}, \gamma-\mathrm{CH}_{2}$ symmetric wag	1322 vvw	1306 w	1306 w	1306 vw	1306 vw	1311 vw	1308 vw	1306 vw
$\nu_{14}, \mathrm{C}-\mathrm{N}$ stretch	1204 (sh)	1211 w	1213 w	1207 w	1210 w	1210 w	1211 w	1208 w
	1176 w	1167 w	1171 w	1168 w	1170 w	1179 w	1169 w	1171 w
β_{15}, β - CH_{2} symmetric twist		1146 m	1154 m	1156 m	1151 m	1155 m	1152 m	1155 m
ν_{35}, α-CH out-of-plane bend	1056 Q, m	1059 m	1061 m	1066 m	1065 m	1065 m	1065 m	1055 m
ν_{36}, v_{37}, ring deformation	1012 Q, w	1013 s	1006 s	1014 s	1009 s	1016 s	1004 s	1016 s
	1003 sh	993 m , sh	992 m , sh	996 m , sh	993 m , sh	994 m , sh	991 m , sh	993 m , sh
$\nu_{38}, \gamma-\mathrm{CH}_{2}$ antisymmetric rock	948 w	941 w	943 w	936 w	938 w	936 w	938 w	964 w
$\nu_{39}, \mathrm{NH}_{2}$ twist		920 w s sh	921 w , sh	no	919 vw	no	920 vw	920 vw
${ }^{17}$, ring breathing mode		894 w	893 w	892 w	894 w	894 w	893 w	893 w
$\nu_{20}, \mathrm{NH}_{2}$ wag	803 Q , sh	827 w	828 w	831 vw	829 vw	832 vw	826 vw	828 vw
$\nu_{41}, \beta-\mathrm{CH}_{2}$ antisymmetric rock	770 vw	770 w	769 w	770 w	771 vw	769 w , sh	767 w , sh	758 m , sh
ν_{21}, ring deformation	545 sh	568 m	556 m , sh	564 m , sh	556 m , sh	564 m , sh	$556 \mathrm{~m}, \mathrm{sh}$	566 m , sh
	537 Q , sh	551 m	536 s	532 m	535 m	551 m	537 m	552 m
ν_{22}, C-N in-plane bend	${ }^{462}$ Q Q , sh	482 vw	480 vw	481 vw	482 vw	481 vw	480 vw	480 vw
	455 P	448 w , sh	448 w, sh	455 m , sh	446 w , sh	456 w , sh	447 w , sh	456 w , sh

[^2]Table 2b. Assignment and the wavenumbers for the CPA in the clathrates

Assignment ${ }^{\text {a,b }}$	$\begin{aligned} & \text { CPA(IR) } \\ & (\mathrm{Gas}) \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CPA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-2G } \\ & \mathrm{G}=1,2 \text {-dichlorobenzene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=1,2 \text {-dichlorobenzene } \end{aligned}$
ν_{24}. NH_{2} antisym. str	3400 vw	3341 s	3342 s	3354 s	3329 s	3354s	3342 s	3342 s
ν_{1}, NH_{2} symmetric stretch	3339 w	3281 m	3281 m	3291 m	3283 m , sh	3290 m	3284 m	3283 m
$\begin{aligned} & v_{2} \text { and } v_{25}, \beta \text { - } \mathrm{CH}_{2} \\ & \text { antisymmerii strect } \end{aligned}$	2968 vvs	2949 vs	2951 vs	2952 vs	2952 vs	2950 vs	2956 vs	2955 vs
ν_{3}, α - CH stretch		2923 m , sh	2929 m , sh	2928 m , sh	2925 m , sh	2929 m , sh	2914 m , sh	2915 m, sh
$v_{4}, v_{26}, \beta-\mathrm{CH}_{2}$symmerric stretch	2875 vvs	2870 s	2869 s	2867 s	2868 s	2870 s	2870 s	2870 s
	2700 w	2729 w	2735 w	2736 w	2734 w	2729 w	2725 w	2725 w
${ }_{7} 7, \mathrm{~N}_{2}$ deformation	1624 Q s s	1581 s	1580 s	1578 s	1581 s	1578 s	1578 s	1578 s
$\nu_{9}, \nu_{30}, \beta-\mathrm{CH}_{2}$ deformations	1461 Q , s	1457 m	1453 w	1452 m	1453 m	1452 m	1457 vs	1457 s
$\nu_{10}, \alpha-\mathrm{C}-\mathrm{H}$ in-plane bend	1356 s	1378 m	1376 m	1377 m	1380 m	1379 m	1375 m	1375 m
$\nu_{11}, \gamma-\mathrm{CH}_{2}$ symmetric wag	1322 vvw	1306 w	1305 vw	1306 vw	1306 vw	1306 vw	no	no
$\nu_{14}, \mathrm{C}-\mathrm{N}$ stretch	1204 (sh)	1208 w	1208 w	1208 w	no	1209 w	1285 w	1218 w
	1176 w	1171 w	1171 w	1170 w	1177 w	1170 w	1167 w	1170 w
ν_{15}, β - CH_{2} symmetric twist		1148 m	1157 m	1149 m	1155 m	1152 m	1153 m	1146 m
ν_{35}, α-CH out-of-plane bend	1058 (sh)	1068 m	1063 m	1069 m	1068 m	1068 m	1066 m	1068 m
ν_{36}, v_{37}, ring deformation	1012 Q , w	1009 s	1017 s	1003 s	996 s	1003 s	1017 m , sh	$1021 \mathrm{~m}, \mathrm{sh}$
	1003 sh	$992 \mathrm{~m}, \mathrm{sh}$	994 m	991 m , sh	991 s, sh	990 m , sh	996 m , sh	993 mm sh
$\nu_{38}, \gamma-\mathrm{CH}_{2}$ antisymmetric rock	948 w	939 w	938 w	940 w	938 w	940 w	943 w	944 w
ν_{20}, NH_{2} wag	803 Q , sh	826 vw	846 vw	827 vw	848 vw	823 vw	no	824 vw
$\nu_{41}, \beta-\mathrm{CH}_{2}$ antisymmertic rock	770 vw	757 s, sh	767 vs	758 w , sh	759 w	no	760 m , sh	no
ν_{21}, ring deformation	545 sh	$555 \mathrm{~m}, \mathrm{sh}$	565 m	554 m , sh	553 w	553 m , sh	565 m , sh	557 m , sh
	537 Q, sh	539 m	552 m	554 m	533 w	554 m	551 m	537 m
ν_{22}, C-N in-plane bend	462 Q , sh	468 w wh	469 w , sh	no	no	no	487 w , sh	487 w , sh
	455 P	448 w	455 w	447 w	448 w	448 w	456 m , sh	436 m sh

a Taken from Ref. [10]. Abbrs: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder and no $=$ not observed.
${ }^{\mathrm{b}} \nu_{14}$ (C-Nstr.), $\nu_{34}\left(\beta-\mathrm{CH}_{2}\right.$ antisym. twist), $v_{35}\left(\alpha-\mathrm{CH}\right.$ out-of-plane bend) and NH_{2} wag bands of CPA(gas) are not observed in the compounds studied.
Table 2c. Assignment and the wavenumbers for the CPA in the clathrates

Assignment ${ }^{\text {a }}$,	$\begin{aligned} & \text { CPA(IR) }{ }_{(\mathrm{Gas})}^{\mathrm{a}, \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \text { Co-CPA-Ni-G } \\ & \text { G }=\text { Naphthalene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-1.85 \mathrm{G} \\ & \mathrm{G}=\text { Naphthalene } \end{aligned}$	Assignment ${ }^{\text {a }}$	$\underset{(\mathrm{Gas})}{\mathrm{CPA}(\mathbb{R})^{\mathrm{a}}}$	$\begin{aligned} & \text { Co-CPA-Ni-G } \\ & \mathrm{G}=\text { Naphthalene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-1.85 \mathrm{G} \\ & \mathrm{G}=\text { Naphthalene } \end{aligned}$
$\nu_{24}, \mathrm{NH}_{2}$ antisym. str	3400 vw	3343 s	3339 s				
ν_{1}, NH_{2} symmetric stretch	3339 w	3283 m	3278 m	ν_{35}, α-CH out-of-plane bend	1056 Q, m	no	no
ν_{2} and $\nu_{25}, \beta-\mathrm{CH}_{2}$ antisymmetric stretch	2968 vvs	2954 s	2956 s	ν_{36}, ν_{37}, ring deformation	1012 Q , w	1010 s , sh	1017 s, sh
$\nu \nu_{3}, \alpha$-CH stretch		2912 w, sh	2911 w, sh		1003 sh	995 m , sh	992 m , sh
ν_{4}, ν_{26}, β - CH_{2} symmetric stretch	2875 vvs	2869 m	2868 m	$\nu_{38}, \gamma-\mathrm{CH}_{2}$ antisymmetric rock	948 w	956 w	956w
	2700 w	2725 w	2724 w	$\nu_{20}{ }^{\text {, } \mathrm{NH}_{2} \text { wag }}$	803 Q , sh	838 w	823 vw
ν_{7}, NH_{2} deformation	1624 Q s	1578 s	1578 s				
ν_{9}, ν_{30}, β - CH_{2} deformations	1461 Q, s	1450 m	1450 m		708 Q , sh	no	no
$\nu_{10}, \alpha-\mathrm{C}-\mathrm{H}$ in-plane bend	1356 s	1379 m	1389 m	ν_{21}, ring deformation	545 sh	567 m	567 m
$\gamma_{11}, \gamma-\mathrm{CH}_{2}$ symmetric wag	1322 vvw	no	1327 vw		537 Q, sh	552 m , sh	540 m , sh
$\nu_{14}, \mathrm{C}-\mathrm{N}$ stretch	1204 (sh)	1211 w	1211 w	ν_{22}, C-N in-plane bend	${ }_{462}^{462}$, sh	no	no
	1176 w	1169 w	1166 w		455 P	452 w	444 w
${ }_{15}, \beta$ - CH_{2} symmetric twist		1153 m	1146 m				

${ }^{\text {a }}$ Taken from Ref. [10]. Abbrs: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder and no $=$ not observed.
v_{14} (C-Nstr.), $\nu_{34}\left(\beta-\mathrm{CH}_{2}\right.$ antisym. twist), $v_{35}\left(\alpha-\mathrm{CH}\right.$ out-of-plane bend) and NH_{2} wag bands of $\mathrm{CPA}(\mathrm{gas})$ are not observed in the compounds studied.

Table 3. n, the number of the guest molecules, included in the $\mathrm{M}-\mathrm{CPA}-\mathrm{Ni}$ hosts, and the duration of the inclusion (the time required to attain constant weight)

Host	Guest	n	Duration (approx.)
Co-CPA-Ni	Benzene	6.17	7 days
Cd-CPA-Ni		4.34	7 days
Co-CPA-Ni	Toluene	4.57	7 days
Cd-CPA-Ni		4.42	7 days
Co-CPA-Ni	o-Xylene	4.58	7 days
Cd-CPA-Ni		2.97	7 days
Co-CPA-Ni	m-Xylene	3.81	7 days
Cd-CPA-Ni		3.35	21 days
$\mathrm{Co}-\mathrm{CPA}-\mathrm{Ni}$	p-Xylene	3.80	7 days
Cd-CPA-Ni		3.43	14 days
Co-CPA-Ni	1,2-Dichlorobenzene	3.56	21 days
Cd-CPA-Ni		2.60	21 days
Co-CPA-Ni	1,3-Dichlorobenzene	0.00	30 days
Cd-CPA-Ni		0.00	30 days
Co-CPA-Ni	1,4-Dichlorobenzene	0.00	30 days
Cd-CPA-Ni		0.00	30 days
Co-CPA-Ni	1,4-Dibromobenzene	0.03	21 days
Cd-CPA-Ni		0.00	21 days
Co-CPA-Ni	Naphthalene	1.15	6.5 months
Cd-CPA-Ni		1.85	6.5 months

pared with those of cyclopentylamine in the host complexes (Table 2). These upward frequency shifts are due to the hydrogen bonding between the $\left(\mathrm{NH}_{2}\right)$ group and the guest molecules. Another notable feature is that $\mathrm{N}-\mathrm{H}$ streching vibrational frequencies in $\mathrm{Cd}-\mathrm{CPA}-\mathrm{Ni}-2 \mathrm{G}$ ($\mathrm{G}=m$-xylene or p-xylene) and in the corresponding host complexes (Table 2 b) are similar suggesting that there is no hydrogen bonding between NH_{2} of the ligand and guest molecules.

As for the spectral changes of the guest molecules, the most outstanding features are as follows. The CH out-ofplane vibrational bands are found to be shifted to higher frequencies from that of the not enclathrated guest (Table 4). Similar positive frequency shifts were observed for Hofmann-type clathrates and explained as being due to the presence of a weak hydrogen bond between π electrons located above and below the plane of the benzene ring and the ammonia molecules of the host lattice [5, 6]. Similar shifts have also been found for other members of Hofmanntype clathrates [3, 7, 8, 13]. Therefore, we may reasonably suggest that the frequency shifts in our compounds are due to the π electron donation from the guests to the hydrogen atoms of the NH_{2} group of the ligand molecule which has a more electrophilic character caused by the coordination. The values of these shifts decrease in the increasing order of the guest size.

Another notable feature of the CH out-of-plane vibration in benzene is that it appears as a triplet for $M(e n) M^{\prime}(C N) \cdot 2 C_{6} H_{6}\left(M=M n\right.$ or $C d, M^{\prime}=C d$ or Hg) [11], a doublet for our compounds and for M (cyclohexylamine) ${ }_{2} \mathrm{Ni}(\mathrm{CN})_{4}$.2benzene $(\mathrm{M}=\mathrm{Co}$ or Cd$)$

Table 4. CH out-of-plane vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of the guests in the clathrates

Guest	Not enclathrated guest	$\mathrm{Co}-\mathrm{CHA}-\mathrm{Ni}^{\text {g }}$	Cd-CHA-Ni ${ }^{\text {g }}$	Co-CPA-Ni	Cd-CPA-Ni
Benzene ${ }^{\text {a }}$	670	688 s/684 vs	687 s	684 s	683 s
	(liquid)	678 s		675 vs	675 vs
Toluene ${ }^{\text {b }}$	734	734 vs	734 vs	737 vs	735 s, sh
	(liquid)	728 s	727 vs	728 vs	728 vs
1,2-dichlorobenzene ${ }^{\text {b }}$	748	748 vs	-	750 vs	750 vs
	$\text { (in } \mathrm{CCl}_{4} \text { and } \mathrm{CS}_{2} \text {) }$				
o-Xylene ${ }^{\text {c }}$	741 (liquid)	743 vs	741 vs	741 vs	741 vs
		755 vs	752 vs	758 w, sh	757 w, sh
m-Xylene ${ }^{\text {d }}$	768	769 vs	767 vs	767 vs	767 vs
	(liquid)				
p-Xylene ${ }^{\text {e }}$	795	796 vs	795 vs	795 vs	796 vs
	(liquid)				
Napthalene ${ }^{\text {f }}$	782	-	786 vvs	796 vs	785 vs
	(in CCl_{4} and CS_{2})			782 vs	

${ }^{\mathrm{a}}$ Taken from Ref. [18].
${ }^{\mathrm{b}}$ Taken from Ref. [19].
${ }^{\text {c }}$ Taken from Ref. [20].
${ }^{\mathrm{d}}$ Taken from Ref. [21].
${ }^{\mathrm{e}}$ Taken from Ref. [22].
${ }^{f}$ Taken from Ref. [23].
${ }^{\mathrm{g}}$ Taken from Ref. [3].
Abbrs: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder.
[3], $\mathrm{Cd}($ pyrazine $) \mathrm{M}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Cd}$ or Hg$)$ [14], $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ [15] and $\mathrm{M}(\mathrm{tn}) \mathrm{Zn}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}$ or Zn$)$ [13], a singlet for $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}$, Zn or Cd) [4,6] and $\mathrm{Cd}\left(4,4^{\prime}\right.$-bipyridyl) $\mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}\right.$ $=\mathrm{Cd}$ or Hg) [16]. In the case of doublet or triplet features the splittings have been ascribed to crystal field effects (strong host-guest interactions) [$4-6,11,12,14-16]$. In the case of a single band, because of the larger cavities due to the ligands, the host-guest interactions are expected not to be effective for splitting [16].

Based on the present data, it is not possible to determine the conformation of the ligand or guest molecules in the clathrate studies. As in the Hofmann-type and Hofmann- $\mathrm{T}_{\mathrm{d}^{-}}$ type benzene clathrates, the relative orientation of the $\mathrm{N}-\mathrm{H}$ bonds of cyclopentylamine with respect to the axis of the π cloud of guest must be the one most favorable for hydrogen bonding [17].

Selective absorption and separation of guest molecules

The phenomena described above implies the employability of the host complexes for selective absorption and separations of isomeric guest molecules. For these purposes, three experiments have been performed: (i) Infrared spectra show that when the host complexes are placed in a desiccator containing a mixture of benzene and toluene vapour with a mole ratio of $1 / 1$, both benzene and toluene are sorbed. (ii) When the host compounds are placed in a desiccator containing a mixture of $o-, m$ - and p-xylene mixture with mole ratios of $1: 1: 1$, all isomers together are absorbed. (iii) Host complexes absorb 1,2-dichlorobenzene only from the 1,2-, 1,3and 1,4-dichlorobenzene mixture with mole ratios of 1:1:1 (This result would also be expected from Table 3).

These results suggest that the host complex compounds presented here may be employed for selective absorption.

It should be noted that experiments with a large number of aromatic guest molecules and host complexes with $\mathrm{M}=$ $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{Pd}$ or Pt and seven cycloalkylamines mentioned above are in progress.

References

1. T. Iwamoto: in J.L. Atwood, J.E.D. Davies and D.D. MacNicol (eds.), The Hofmann-type and Related Inclusion Compounds, Inclusion Compounds, Vol.1, Academic Press London (1984), pp. 28-57.
2. S. Nishikiori and T. Iwamoto: Chem. Lett., 1035 (1982).
3. Z. Kantarcı and M. Bülbül: J. Incl. Phenom. 40, 105 (2001).
4. S. Akyüz, A.B. Dempster, and R.L. Morehouse: J. Mol. Struct. 17, 105 (1973).
5. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1183 (1974).
6. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1189 (1974).
7. S. Bayarı, Z. Kantarcı, and S. Akyüz: J. Mol. Struct. 351, 19 (1995).
8. N. Karacan, Z. Kantarcı, and S. Akyüz: Spectrochim. Acta A52, 771 (1996).
9. R.L. Mc Cullough, L.H. Jones, and G.A. Croaby: Spectrochim. Acta 16, 929 (1960).
10. V.F. Kalasinsky and T.S. Little: J. Raman Spectrosc. 9, 224 (1980). E. Kasap and Z. Kantarci: J. Incl. Phenom. 23, 1 (1995).
S. Akyüz and J.E. Davies: J. Mol. Struct. 97, 457 (1982).
Z. Kantarcı and C. Bayrak: J. Incl. Phenom. 30, 59 (1998).
11. N. Ekici, Z. Kantarcı, and S. Akyüz: J. Incl. Phenom. 10, 9 (1991).
12. E. Kasap and Z. Kantarcı: J. Incl. Phenom. 20, 33 (1995).
13. S. Bayari, Z. Kantarcı, and S. Akyüz: J. Inc. Phenom. 17, 291 (1998).
14. E. Ruiz, J.J. Novoa, and S. Alvarez: J. Incl. Phenom. 99, 2296 (1995).
15. P.C. Painter and J.L. Koenig: Spectrochim. Acta 33A, 1003 (1977).
16. A.P. Hitchcock and J.L. Koenig: J. Mol. Spectrosc. 54, 223 (1975).
17. J.H.S. Green: Spectrochim. Acta 26A, 1913 (1970).
18. J.H.S. Green: Spectrochim. Acta 26A, 1523 (1970).
19. J.H.S. Green: Spectrochim. Acta 26A, 1503 (1970).
20. E.R. Lippincott and E.J. O'Reilly: J. Chem. Phys. 23, 238 (1955).

[^0]: * Author for correspondence.

[^1]: a Taken from Ref. [9]. Abbr: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder and $\mathrm{no}=$ not observed.
 $\mathrm{b} v\left({ }^{3} \mathrm{CN}\right)$ and $\nu_{0}, \nu(\mathrm{Ni}-\mathrm{C}), E_{u}$ of $\mathrm{Ni}(\mathrm{CN})_{4}$ unit are not observed in the compounds studied.

[^2]: ${ }^{\mathrm{a}}$ Taken from Ref. [10]. Abbrs: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder and no $=$ not observed.
 b_{14} (C-Nstr)), $v_{34}\left(\beta-\mathrm{CH}_{2}\right.$ antisym. twist), $\nu_{35}\left(\alpha-\mathrm{CH}\right.$ out-of-plane bend) and NH_{2} wag bands of $\mathrm{CPA}(\mathrm{gas})$ are not observed in the compounds studied.

